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1. Introduction

The dynamics of a flexible spinning disk is a topic of great current interest. Spinning disks are
encountered in computer memory disks, circular saw blades, turbine rotors, rotor disks and other
machine elements. The ever increasing need for higher spin rate to reduce the access time for
reading/writing of data in a computer memory disk calls for high-reliability and high-speed disks.
In computer applications, the hard/floppy disk rotates very close to a base plate. The thin air film
between the disk and the base plate helps to stabilize the transverse vibrations of the disk,
allowing the disk to be operated at high rotation speeds. Disks stabilized by this technique are
commonly used for data storage and are called Bernoulli disks. For disks spinning at high speeds
near a rigid plate on a thin air film, there is a potential danger for the disks to undergo self-excited
oscillations resulting from the coupling between the dynamics of the disk and the hydrodynamics
of the film. When the self-excited instability arises, the amplitude of the disk vibration increases
even in the absence of any external force. The effect of an external load on a spinning disk is also
frequently encountered in magnetic recording applications by way of a read/write head and in
spinning saw blade applications by way of work piece load.

One of the earliest investigations into the vibrations of a spinning disk was conducted by Lamb
and Southwell [1]. They derived the linearized equations for transverse deflection of the disk and
identified contributions from the bending and the in-plane stresses due to rotation. They also
examined the frequencies and modes of free vibration for very flexible and very rigid disks.
Southwell [2] investigated the effects of a central clamp on the natural frequencies of the spinning
disk system while including flexural rigidity as well as membrane stresses. Prescott [3] later
extended the analysis to disks with different clamping geometries and cross-sections. Simmonds
[4] studied the transverse vibrations of a flat centrally clamped spinning membrane, ignoring the
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bending stresses. Eversman and Dodson [5] included bending rigidity along with membrane
stresses and obtained the solution of the linear problem by using a power series expansion, and by
using a perturbation expansion about a singular point. The frequencies of vibration were obtained
as a function of the ratio of the clamping radius to the outer radius.

Research into the effects of the fluid medium on the transverse vibrations of rotating disks was
started by Pearson [6]. His work involved experimental investigation of a disk spinning in close
proximity of a base plate. His experiments showed that the presence of a base plate stabilizes the
transverse motion of the disk. Pelech and Shapiro [7] presented a more complex analysis of a
flexible recording disk. The air was treated as an incompressible fluid with constant viscosity and
negligible inertia. The flexible disk was modelled using linear membrane theory and the disk was
assumed to derive its stiffness from the in-plane membrane forces of rotation. Solutions were
obtained for steady and axisymmetric configuration.

Adams [8] examined the steady state solution of a disk spinning near a rigid wall. He included
the effect of bending stiffness in his model for the disk and treated the fluid as incompressible.
Carpino and Domoto [9] included the inertial effects in the modified Reynolds equation and
determined the axisymmetric solution using the matched asymptotic expansions and a mixed
numerical/perturbation procedure. Mahers and Adams [10] included von K!arman type
non-linearities in their model and showed that for small gap sizes, the steady state displacement
of the disk is not much different from the steady state displacement obtained using a linear plate
model.

The effects of external excitations on the vibrations of spinning disks have also been considered
in the literature. The external force can be a space fixed load or a moving load. The external force
has often been used to model the effects of a read/write head in a computer memory disk.

Initial studies involved modelling the external force on a disk spinning in the absence of a
surrounding medium. Benson and Bogy [11] approached the problem of a steady deflection of a
flexible spinning disk due to a fixed transverse load within the context of the membrane theory.
They observed that the membrane operator was singular. They concluded that the effect of
bending stiffness, however small, has to be included. Cole and Benson [12] used an eigenfunction
approach to identify the modes in transverse response of a flexible spinning disk subjected to a
steady space-fixed transverse load.

Licari and King [13] studied the problem of elastohydrodynamic analysis of head-to-disk
interface phenomena using a combination of finite element model for the disk and a finite
difference model for the fluid. Effects of disk radius and disk thickness were investigated. Adams
[14] investigated air flow between the disk and the base plate by means of two foundation
parameters, stiffness and damping for each Fourier mode. The effect of using this new model and
three other models on the point load solution and on the simulation of the disk-to-head interface
was investigated.

Ono et al. [15] studied the mechanical interface between head and media in a flexible disk drive.
Their model is a spinning disk partially supported by means of springs. They used Green’s
function for a spinning disk deflection to obtain the solutions, and concluded that the external
stiffness had the effect of increasing the resonance speeds, whereas the external damping made the
disk deflection asymmetric with respect to the applied force. Jiang et al. [16] examined the
dynamic response of a read/write head floppy disk system subjected to axial excitation. The floppy
disk was modelled as a spinning disk. The read/write head was modelled as a mass–spring system.
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The stiffness of the air film in the cover was modelled as a set of uniform springs under the disk.
They determined various resonance frequencies and forced response for the system.

Huang and Chiou [17] analyzed the vibrations of a spinning disk with moving head assembly
where the magnetic head was modelled as a harmonically varying load traveling in the radial
direction. The spinning disk response was solved for analytically using a Galerkin approach. They
concluded that the moving speed of the load acts as a driving frequency and causes disk
resonances at certain speeds. A constant load moving from the fixed end to the free end resulted in
no oscillations, but it did cause oscillations when moving from the free end to the fixed end.

Disk-warpage also can have a significant effect on the vibratory response of a spinning disk. Wu
and Adams [18], analyzed this effect for a flexible disk spinning in the presence of a thin air film
while in contact with a point-head. They used a harmonic load to simulate the effect of a read/
write head. In addition, they used a sinusoidal function to represent the axial excitation. From
among the models they used for modelling the skew/warpage, they concluded that the effect of the
skewed disk is to create a large deflection change and pitch angle variation. Carpino [19] employed
a perturbation technique to study the effects of initial curvature on steady state configuration of
the disk and compared results with experimental data obtained by Pelech and Shapiro [7]. He
concluded that in cases where Young’s modulus and the Poisson ratio have directional
dependence, the directional variation in the properties will interact with the initial curvature.

Thus far, a brief review of the literature on the vibrations of spinning disks has been presented.
The analysis becomes increasingly complex when the dynamic effects of fluid film are considered.
The disk–fluid system can even undergo flutter instability and lead to self-excited oscillations
which arise at certain wavenumbers above some rotational speeds of the disk. A review of the
literature on flutter instability and ensuing oscillations can be found in a recent work of
Naganathan et al. [20].

In the present work, a numerical approach is employed to study the forced response of a flexible
spinning disc coupled to a thin air film. This direct numerical simulation gives insight into the
response of the disk film combination without resorting to any approximation technique. More
specifically, the effects of symmetric and constant as well as harmonically varying line loads on the
vibratory response of a disk film system are studied. Thus, we consider a spinning flexible annular
disk which is clamped at the inner end, is free at the outer end, and rotates about its vertical axis
with a constant speed of O rad=s: The disk rotates close to a rigid base plate. The air flow between
the disk and the base plate is modelled as an incompressible and laminar flow. The fluid flow and
the disk deflection are coupled by means of the spacing and the pressure at the interface. The disk
is modelled by a linear plate equation for a spinning disk. The equations governing the disk
deflection and the fluid flow represent a set of coupled non-linear partial differential equations.
These coupled non-linear evolution (time-dependent) equations are solved directly without
subjecting them to linearizations or to any other approximation. In the numerical solution
approach, the spatial derivatives are approximated by finite differences, where as the temporal
solution is achieved by using Runge–Kutta algorithm. A direct numerical simulation tool is thus
developed to solve the governing equations. This code has been recently used [20] to predict the
existence of self-excited oscillations at sufficiently high wavenumbers and disk rotational speeds.
It is here used to study the response of the disk–fluid system to time-independent as well as
harmonically varying line loads. Thus, the effects of system design as well as forcing parameters
can be evaluated.
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2. Governing equations

2.1. Fluid equations

Consider an annular circular disk, clamped at its inner radius ra; free at its outer radius rb;
and rotating at a constant angular velocity O: The lower surface of the disk is at a distance d

from a rigid base plate, as shown in Fig. 1. The fluid flow between the disk and the base
plate is modelled by simplifying the Navier–Stokes equations. The following basic assumptions
regarding the flow are made: (1) the fluid is Newtonian; (2) the flow is laminar and in-
compressible; (3) the fluid viscosity is constant; (4) the thermal effects are negligible; (5) all fluid
inertial forces, except for the centrifugal force, are negligible compared to the viscous forces; (6)
the fluid film thickness is small compared to the diameter of the disk; thus, the pressure variation
across the film thickness is negligible compared to variations in the plane perpendicular to the disk
axis.

With these simplifying assumptions, the Navier–Stokes equations in the stationary frame can be
written as

r-momentum:

�ra

v2
f

r
¼ �
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@r
þ m

@2vr

@z2
; ð1Þ

f-momentum:

0 ¼ �
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r
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@2vf

@z2
; ð2Þ

Fig. 1. Schematic representation of the disk–fluid model.
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z-momentum:

0 ¼
@P

@z
; ð3Þ

where as, the continuity equation is given by
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where ra is the density of the fluid and m is its viscosity. The co-ordinate system is fixed at the
radial center of the disk and coincides with the neutral plane of the disk in its undeformed
position. The variable f represents the stationary angular co-ordinate where as the variable y
denotes the angular co-ordinate rotating with the disk. The two co-ordinates are related by

f ¼ yþ Ot: ð5Þ

Associated with the four fluid equations, there are the boundary conditions. Three of these
conditions are for no slip at the lower surface of the rotating disk. The remaining conditions are
for no slip at the stationary disk boundary or the base plate. Note that at the base plate, z ¼
�ðd þ h=2Þ: The boundary conditions for the fluid flow owing to the no slip condition then
become

z ¼ 0; vr ¼ 0; ð6Þ
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Here, sðr;f; tÞ represents the gap or the film thickness between the rotating disk and the stationary
base plate. Now, integrating the f-momentum and r-momentum equations, using the resulting
expressions for vf and vr into the continuity equation, and integrating it across the z direction,
gives the equation
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This is the well-known Reynolds equation in the theory of lubrication for the pressure variation
as a function of the radial distance r and the angle y: The fluid pressure is assumed to be
atmospheric at both the inner and the outer radius of the disk. The boundary conditions for
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Eq. (12) are then

PðraÞ ¼ PðrbÞ ¼ 0: ð13Þ

2.2. Disk equation

As already stated, the disk is of constant thickness, and is rotating with a constant
angular velocity O: The following basic assumptions are made for the disk model: (1) the
disk is made of an isotropic material; (2) the Youngs’ modulus ðEÞ and the Poissons’ ratio ðnÞ for
the plate are constant; (3) the plate is linearly elastic so that Hooke’s law holds; (4) for any point
on the disk, the in-plane displacements ðu; vÞ are much smaller than the transverse deflection ðwÞ;
that is, 0ou; v5w; (5) transverse shear and rotatory inertia are ignored; (6) the transverse
deflection ðwÞ does not vary across the thickness of the disk, that is, ezz ¼ 0; and (7) shear
deflection is neglected, which implies that the normal shear strains are negligible, that is, erz ¼ 0;
eyz ¼ 0:

With these assumptions, the governing plate equation for a spinning disk, with both membrane
and bending stiffness included, is given by
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Here, sr and sy are the steady state stresses in the disk due to the centrifugal action of rotation,
and they are given by

sr ¼
rdO

2

8
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where

G ¼
�ð1þ nÞr2a þ ð3þ nÞr2b
ð1� nÞr2a þ ð1 þ nÞr2b

:

Also, D is the bending stiffness of the disk, h is its thickness, P is the transverse pressure
distribution at its surface due to the fluid, and rd is the density of the disk material. Finally, q is a
symmetric line load (force/length) located at the radius ri: This load will be considered either as a
constant or as harmonically varying in time.

Since Eq. (14) is a fourth order equation, four boundary conditions are needed. For the
disk clamped at the inner radius, the displacement and the slope should vanish. Similarly, the
shear and the bending moment vanish at the outer radius. Thus, the required boundary
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conditions are
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Eqs. (12)–(16) are the governing equations for the spinning flexible disk and the fluid flow
between the disk and the rigid surface. This complete set of equations is now numerically solved
without any further simplifications. As stated earlier, Naganathan et al. [20] developed a
numerical technique to solve these equations starting from a specified initial condition. In the case
of constant and harmonic external loads, the equations were integrated in time till the transients
died down and a steady state was reached. Since the numerical technique is well documented, we
do not give its details and focus more on the predicted responses for the disk–fluid system.

3. Forced oscillations

We consider the effect of an external harmonic load on the vibration of the disk spinning in the
presence, and absence, of a surrounding medium. We also investigate the effect of the fluid film
thickness on the oscillations of the disk. Only axisymmetric loads and responses near the lowest
natural frequency of the disk are considered in this study.

3.1. Response to a steady line load

First consider the steady state deflection of a disk under the influence of a constant load. The
position and the magnitude of the load are varied to observe the effects of the load magnitude and
location. The parameter set for the numerical studies used is: ra ¼ 10 mm; rb ¼ 140 mm; ra ¼
1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6 � 10�6 Ns=m2; d ¼ 1:0 mm; h ¼
38� 10�6 m and n ¼ 0:3: Various cases are considered in which the location and magnitude of the
line load are varied.

Case i. ri ¼ 51:0 mm; O ¼ 1000 rpm: The magnitudes of the load q used for steady state
axisymmetric response are �5; �10; �30; �50; �75 and �100 N=m: The steady state deflection
and pressure variations are shown in Figs. 2 and 3.

Case ii. ri ¼ 91:0 mm; O ¼ 1000 rpm: The same magnitudes of the load, �5; �10; �30; �50;
�75 and �100 N=m; are used here. Thus, the only difference with Case i above is in the location
of the circular line load. The steady state deflection and pressure variations are shown in Figs. 4
and 5.

Case iii. ri ¼ 131:0 mm; O ¼ 1000 rpm: Again, the same magnitudes of the load q are used. The
load is applied very near the outer periphery of the disk. The steady state deflection and pressure
variations are shown in Figs. 6 and 7.
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Fig. 2. Steady state deflection of a disk for line loads of different magnitude at ri ¼ 51 mm: The parameters are:

ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼
1:0 mm; h ¼ 38� 10�6 m; n ¼ 0:3 and O ¼ 1000 rpm:
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Fig. 3. Steady state pressure field for line loads of different magnitude at ri ¼ 51 mm: The parameters are: ra ¼ 10 mm;
rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 1:0 mm; h ¼
38� 10�6 m; n ¼ 0:3 and O ¼ 1000 rpm:
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Fig. 4. Steady state deflection of a disk for line loads of different magnitude at ri ¼ 91 mm: The parameters are:

ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼
1:0 mm; h ¼ 38� 10�6 m; n ¼ 0:3 and O ¼ 1000 rpm:
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Fig. 5. Steady state pressure field for line loads of different magnitude at ri ¼ 91 mm: The parameters are: ra ¼ 10 mm;
rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 1:0 mm; h ¼
38� 10�6 m; n ¼ 0:3 and O ¼ 1000 rpm:
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Fig. 6. Steady state deflection of a disk for line loads of different magnitude at ri ¼ 131 mm: The parameters are:

ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼
1:0 mm; h ¼ 38� 10�6 m; n ¼ 0:3 and O ¼ 1000 rpm:

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
 -4

 -2

0

2

4

6

8

10

 Radius (m)

 P
re

ss
u

re
 (

N
/m

2 )

-5 N/m 

-10 N/m 

-30 N/m 

-50 N/m 

-75 N/m 

 -100 N/m 

Fig. 7. Steady state pressure field for line loads of different magnitude at ri ¼ 131 mm: The parameters are: ra ¼
10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 1:0 mm;
h ¼ 38 � 10�6 m; n ¼ 0:3 and O ¼ 1000 rpm:
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It is seen that the deflections under the load are higher for the case when the load is applied at
ri ¼ 51 mm; than at ri ¼ 131 mm: This is due to the smaller film thickness at the outer radius and
hence the associated higher stiffness. This helps in supporting the load at the outer ends of the
disk. However, it can be noted from the plots of the pressure field in Figs. 3, 5 and 7, that a small
change in displacement under the load causes the pressure in the upstream to increase. Thus, as
the load increases, the fluid pressure builds up to support the load. Another point to note is that
when the load is applied close to the fixed center of the disk ðri ¼ 51 mmÞ; the deflection of the
disk increases monotonically with the load as shown in Fig. 2. This is, however not true when the
load line moves close to the outer free end of the disk as seen in Fig. 6.

3.2. Forced harmonic response in the absence of the fluid film

First consider the resonant response of a disk in the absence of the fluid. A harmonic line load is
applied circumferentially along a line of constant radius ri: The response of the spinning plate is
then governed by Eq. (14) with P ¼ 0: The parameter set used is the same as the one given in the
previous section. The harmonic load is assumed to be of the form

q ¼ q0 cosð *otÞ; ð17Þ

where q0 chosen for simulations is �4 N=m; and the line load is located at ri ¼ 91 mm:
Approximations to the lowest few natural frequencies of a spinning disk for axisymmetric modes,
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Fig. 8. Amplitude at the point ri ¼ 91 mm on the disk spinning in the absence of a surrounding medium, due to a

harmonic load. The parameters are: ra ¼ 10 mm; rb ¼ 140 mm; rd ¼ 1100 kg=m3; E ¼ 1:47� 108 N=m2; h ¼ 38 �
10�6 m; n ¼ 0:3; q0 ¼ �4 N=m and O ¼ 1000 rpm:
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for the parameter set chosen, are found using the Rayleigh–Ritz technique. These natural
frequencies are used in identifying the excitation frequencies to be provided in the numerical code
in order to excite resonant behavior. A small damping term has also been intentionally introduced
into the governing equation (14) in order to limit the response when the excitation frequency is
near one of the natural frequencies. The coefficient c is chosen to be equal to 10% of the critical
damping coefficient ðccÞ: The critical damping is found utilizing the natural frequencies obtained
by the Rayleigh–Ritz technique. The simulations are performed for various values of the
excitation frequency *o in the range of 8–13 Hz; and the amplitude of the steady state harmonic
response is plotted as a function of the frequency (see Fig. 8). It is seen that the amplitude of
response, plotted for the point (or circle) of application, rises very sharply close to resonance and
decays as the exciting frequency moves far away from the first natural frequency. Thus, as is
expected, the amplitude of vibration of a spinning disk in the absence of the surrounding medium,
can be high for low damping.

3.3. Forced harmonic response in the presence of the fluid film

We now consider the effect of the fluid film on the steady state harmonic response of the
spinning disk.

The simulations were performed for frequencies of excitations ð *oÞ in the range of 1 to 13 Hz:
The amplitude of the steady state periodic response at the point of application of the harmonic
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Fig. 9. Amplitude at the point ri ¼ 91 mm on the disk spinning in the presence of a surrounding medium, due to

harmonic load. The parameters are: ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47 �
108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 1:0 mm; h ¼ 38� 10�6 m; n ¼ 0:3; q0 ¼ �4 N=m and O ¼ 1000 rpm:
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108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 1:2 mm; h ¼ 38� 10�6 m; n ¼ 0:3; q0 ¼ �4 N=m and O ¼ 1000 rpm:
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Fig. 11. Amplitude of the point ri ¼ 91 mm on the disk spinning in the presence of a surrounding medium, due to a

harmonic load. The parameters are: ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47 �
108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 0:7 mm; h ¼ 38� 10�6 m; n ¼ 0:3; q0 ¼ �4 N=m and O ¼ 1000 rpm:

A.K. Bajaj et al. / Journal of Sound and Vibration 263 (2003) 451–466 463



load ðr ¼ 91 mmÞ; for a system with film thickness d ¼ 1:0 mm; is shown in Fig. 9. Compared to
the disk response without the fluid, two effects can be noted immediately. First, the resonant, or
maximum, response frequency is reduced drastically. Furthermore, the maximum amplitude of
vibration has decreased considerably when the effect of the fluid is included in the model. The
fluid provides damping, which helps in reducing the amplitude of vibration.

When the air or film gap size is small, the air adds considerable inertia to the disk due to slender
aspect ratio of the air bearing. Small accelerations of the disk result in large accelerations in the
fluid. The added inertia also reduces the resonant frequency. Thus, it is seen that the surrounding
fluid plays an important role in controlling the vibrations of the spinning disk.

In order to evaluate the damping, inertial and stiffening effects of the fluid film, response curves
are generated for various gap sizes. The gap size is increased to d ¼ 1:2 mm with all the other
parameters being the same. The steady state amplitude–response curve is shown in Fig. 10. It is
seen that the resonance frequency has shifted to a higher frequency. The peak amplitude of
response has also increased compared to the case of d ¼ 1:0 mm: The ability of the fluid to
support the load has decreased as the gap size has increased.

Similar response curves were also generated for gap sizes d ¼ 0:7; 1.5 and 2:0 mm; and the
results are shown in Figs. 11–13. It is seen in all the cases that the amplitude of vibration increases
as the gap size increases. This is also accompanied by an increase in resonant response frequency.
Furthermore, the response curves get flattened out as the gap size increases and the large
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Fig. 12. Amplitude of the point ri ¼ 91 mm on the disk spinning in the presence of a surrounding medium, due to a

harmonic load. The parameters are: ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47 �
108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 1:5 mm; h ¼ 38� 10�6 m; n ¼ 0:3; q0 ¼ �4 N=m and O ¼ 1000 rpm:
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amplitude response exists over a wider frequency interval. Thus, the fluid helps in controlling the
amplitude of vibration in the presence of an external harmonic loading on the disk. This is in
addition to the enhanced stability achieved by spinning a disk close to the base plate. As the gap
size is increased, the tendency for the fluid to support the load decreases. Due to this the disk gets
deflected closer to the base plate under the point of application of the load which in turn increases
the pressurization. This pressurization might be creating a local stiffening effect due to which the
resonant frequency is increased.

4. Summary

The steady state axisymmetric deflection of a spinning disk under the influence of a constant
line load for various locations and magnitude of the load has been studied. It is seen that as the
load magnitude increases, the fluid pressure builds up to the level required to support the load. In
the case of a disk spinning in the absence of a surrounding medium, the amplitude of response of
the disk increases considerably when the excitation frequency of a harmonic load is close to the
natural frequency of the disk. When the effect of the surrounding medium is introduced, the
resonant response frequency as well as the maximum amplitude of response are seen to decrease
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Fig. 13. Amplitude at the point ri ¼ 91 mm on the disk spinning in the presence of a surrounding medium, due to a

harmonic load. The parameters are: ra ¼ 10 mm; rb ¼ 140 mm; ra ¼ 1:23 kg=m3; rd ¼ 1100 kg=m3; E ¼ 1:47 �
108 N=m2; m ¼ 18:6� 10�6 Ns=m2; d ¼ 2:0 mm; h ¼ 38� 10�6 m; n ¼ 0:3; q0 ¼ �4 N=m and O ¼ 1000 rpm:
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with a decrease in the film thickness. This is in addition to the dampening effect expected due to
the presence of the spinning viscous fluid.
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